Jūs esate čia: Pradžia » Visos temos » Spauda |
Šį pavasarį mokslininkams atsivers nauji dramatiški Visatos vaizdai. NASA planuoja paleisti palydovą GLAST, skirtą tirti egzotiškoms kosminės erdvės sritims. Tokios yra, pavyzdžiui, artimiausios juodųjų skylių ir neutroninių žvaigždžių aplinkos, spinduliuojančios milžinišką energiją aukštos energijos gama spindulių diapazone. Maždaug tuo pat metu CERN, Europos elementariųjų dalelių fizikos laboratorijoje netoli Ženevos, pradės veikti hadronų greitintuvas LHC, kuris teiks beprecedentę informaciją apie mažiausias gamtoje egzistuojančias daleles ir jų tarpusavio sąveiką nedidelėse erdvėse. Tikimasi, kad duomenų apie kai kuriuos iš LHC tiriamų procesų, vykstančių natūraliomis kosmoso sąlygomis, gaus ir GLAST. Tokių įdomių ir revoliucingų laikotarpių moksle būna retai. Prisijunk prie technologijos.lt komandos! Laisvas grafikas, uždarbis, daug įdomių veiklų. Patirtis nebūtina, reikia tik entuziazmo. Sudomino? Užpildyk šią anketą! 2008 metai – tai naujos fizikos eros pradžia. Planuojama pradėti eksploatuoti įrenginį, kurio, jei pažvelgtume į fizikinių mokslų istoriją, mokslininkai laukė labiau negu kurio kito. Tai didysis hadronų greitintuvas (angl. Large Hadron Collider – LHC). Tačiau LHC – ne vienintelė būsima „atradimų mašina“. Kita – tai kosminis gama spindulių teleskopas GLAST (angl. Gamma-ray Large Area Space Telescope). GLAST teleskopui bus patikėti du svarbūs uždaviniai: jis stebės beveik netyrinėtą gama spindulių energijų diapazoną ir galės tiksliai užregistruoti gama impulsų atėjimo momentus. Šie GLAST privalumai leis patikrinti, kiek pagrįstos įvairios teorijos, kuriose siūloma išplėsti dabartinį standartinį dalelių fizikos modelį. Kartu naudojant LHC ir GLAST mokslininkams gali pavykti identifikuoti tamsiąją medžiagą, kuri sudaro didžiąją Visatos medžiagos dalį. Gama spinduliaiGama spinduliai – tai didžiausią energiją turintis elektromagnetinis spinduliavimas, esantis trumpabangiame elektromagnetinio spektro gale. Gama fotonai yra nepalyginamai energingesni už regimąją šviesą ir net už rentgeno spindulius, ir dalį tos energijos galima paversti medžiagos dalelėmis. Tokius procesus aprašo garsusis Alberto Einšteino sąryšis E=mc2. Stebėtinai turtingas ir besikeičiantis gama spindulių dangus gerokai skiriasi nuo to ramaus vaizdo, kurį matome savo akimis. Gama diapazone jis tarytum verda nuo supermasyvių juodųjų skylių, beveik šviesos greičiu svaidančių medžiagą į kosminę erdvę, masyvių žvaigždžių sprogimų ir jų žybčiojančių liekanų, hipertankių neutroninių žvaigždžių, turinčių gargantiuaniškus magnetinius laukus, ir aukštaenergės galaktikos pašvaistės, kurią sukelia elektringos dalelės, dar vadinamos kosminiais spinduliais. Kosminiai gama spinduliai gali atsirasti ir anihiliuojant egzotiškoms dalelėms, kurios sudaro paslaptingą tamsiąją medžiagą. Šias daleles LHC bandys sukurti laboratorijoje. Dažniausiai gama spinduliai be trukdžių kerta didžiąją regimosios Visatos dalį – milijardus šviesmečių, – tačiau jie išsitaško mūsų atmosferoje. Čia jų energija virsta mažesnių dalelių lietumi. Pačių skvarbiausių gama spindulių energija, išreikšta įprastais elementariųjų dalelių fizikos vienetais, siekia daugiau nei 100 mlrd. elektronvoltų (GeV). Jų sukeliamas atmosferos dalelių lietus gana intensyvus, kad būtų užregistruotas specialiai tam sukurtų antžeminių laboratorijų. Tačiau norėdami tirti kiek mažesnės energijos spindulius, mokslininkai turi iškelti į kosmosą specializuotus teleskopus. Kaip ir daugelyje astrofizikinių tyrimų, gama spindulių įvairovė turi dvi puses: tai, kas vienam tyrėjui yra signalas, kitam – nepageidautinas fonas. Ieškodami naujų reiškinių tyrėjai visų pirma privalo įsitikinti, ar stebėjimų rezultatų negalima paaiškinti remiantis jau žinomais procesais. Todėl atsakyti į fundamentalius šiuolaikinės fizikos klausimus galima tik pasitelkus astrofizikinius stebėjimus. Tokius, kokius netrukus pradės GLAST. Nuo EGRET iki GLASTTiriant Visatą didelių energijų diapazone kyla mokslinių klausimų ir naudojamos eksperimentų metodikos, kurioms reikia gilių dalelių fizikos ir astronomijos žinių. Per pastaruosius du dešimtmečius fizikiniuose moksluose buvo matoma ryški tendencija – tai, kad vienijasi tradiciškai viena nuo kitos labai nutolusios disciplinos (žr. When field collide, David Kaiser; Scientific American, 2007 birželis). Šį faktą patvirtina ir trijų šio straipsnio autorių profesijos. Atvudas (Atwood) ir Ricas (Ritz) yra studijavę dalelių fiziką, o Maikelsonas (Michelson) – astrofizikas; anksčiau jis priklausė komandai, kuri sukūrė gama spindulių teleskopą EGRET (angl. Energetic Gamma Ray Experiment Telescope). Šis prietaisas buvo skirtas paskutinei didelei NASA kosminei gama spindulių observatorijai CGRO (angl. Compton Gamma Ray Observatory).
LAT surinks maždaug 100 kartų daugiau gama spindulių negu EGRET. Jo stebėjimo laukas yra maždaug tokio dydžio, kaip žmogaus akies regėjimo laukas ir apima apie 20 proc. dangaus. Du kartus per tris valandas apskriedamas aplink Žemę GLAST apžvelgs visą dangaus skliautą. Ši jo ypatybė bus labai svarbi ieškant trumpalaikių gama spindulių žybsnių, kurių daug užregistravo EGRET. Silpnus spinduliavimo šaltinius, kuriuos bandydamas aptikti EGRET sugaišo keletą metų, jautresni GLAST prietaisai užregistruos per keletą dienų. LAT ir Žybsnių monitorius elektromagnetiniame spektre kartu apims energijos intervalą, kurio kraštinės vertės skiriasi daugiau nei 10 mln. kartų. Gerokai didesnes galimybes už savo pirmtakus turintis GLAST leis geriau pažinti supermasyvias juodąsias skyles ir neutronines žvaigždes, kurios gama spindulių diapazone išspinduliuoja milžinišką energiją. Be to, jis daug geriau atliks EGRET pradėtą darbą – pastarajam nepavyko identifikuoti maždaug dviejų trečdalių visų jo aptiktų gama spindulių šaltinių. Palydovas taip pat gali pastebėti reiškinių, esančių už standartinio dalelių fizikos modelio ribų ir patikrinti standartinio modelio procesų veikimą ekstremaliomis sąlygomis. Toliau pateikiamas kai kurių galimų neįprastų reiškinių sąrašas. 1 Tamsioji medžiagaJau nuo XX a. 4 dešimtmečio astronomai žinojo, kad Visatoje egzistuoja daugiau medžiagos, nei mato mūsų akys. Ir galaktikų spiečiuose skriejančios galaktikos, ir žvaigždės galaktikose juda greičiau, nei judėtų veikiamos vien tik matomos medžiagos gravitacijos. Vadinasi, jas traukia milžiniškas kiekis nematomos medžiagos. Fizikai per tą laiką išsiaiškino, kad praplėtus standartinį modelį galima paaiškinti, iš ko ta medžiaga sudaryta. Kuriant populiariausią iš šių plėtinių buvo remiamasi hipotetine gamtos savybe, vadinama supersimetrija, kurios paieška ir yra vienas iš LHC greitintuvo uždavinių (žr. The Dawn of Physics beyond the Standard Model, Gordon Kane; Scientific American, 2003 liepa). Supersimetriškos dalelės, sudarančios tamsiąją medžiagą, iš tikrųjų nėra visiškai nematomos. Manoma, kad jos gali tik labai silpnai sąveikauti su įprastine medžiaga ir šviesa, tačiau pasižymi įdomia savybe – šios dalelės yra savo pačių antidalelės. Todėl susitikusios dvi tokios dalelės anihiliuoja. Jų didelės masės virsta dideles energijas turinčiomis dalelėmis, tarp kurių yra ir gama spindulių. Reikia tik išmokti atskirti šiuos spindulius nuo kitų šaltinių skleidžiamo panašaus spinduliavimo. Apie nematomą medžiagą žinoma visai mažai, todėl jos galimai skleidžiamų gama spindulių intensyvumo ir energijos vertinimai labai skiriasi.
Paprasčiausiais atvejais anihiliacija sukuria tik du gama spindulių fotonus, kurių energija lygi nematomos medžiagos dalelių masei, ir, dabar manoma, gali siekti apie kelis šimtus GeV. Situacija primena gerai žinomą 511 keV gama spinduliavimą, atsirandantį anihiliuojant elektronams ir jų antimedžiagos partneriams pozitronams. Astronomai, stebėdami 511 keV gama spindulius, žino, kad juos kuriant dalyvavo pozitronai. Taip pat aptikę daug gama spindulių, kurių energija 100 GeV eilės, stebėtojai žinos, kad jų atsiradimą galėjo lemti tamsioji medžiaga.
GLAST gauti duomenys gerai derės su tuo pat metu vykdomais dalelių fizikos eksperimentais. Greitintuvas LHC gali sukurti naujas daleles, išmatuoti jų masę ir nustatyti, kaip stipriai jos sąveikauja su kitomis dalelėmis. Tai bus kandidatės į tamsiąją medžiagą. GLAST nustatys naujai atrastų dalelių vaidmenį visoje Visatoje. Šios dalelės iš greitintuvo išlėks greičiau, negu fizikai išsiaiškins, ar jos stabilios, todėl GLAST surinkti duomenys turės lemiamą reikšmę vertinant, ar dalelės gali gyvuoti taip ilgai, kad atliktų tamsiosios medžiagos darbą. GLAST taip pat padės aptikti mūsų planetą skrodžiančią nematomąją medžiagą (žr. The Search for Dark Matter, David B. Cline; Scientific American, 2003 kovas). 2 Miniatiūrinės juodosios skylėsSpecialioji reliatyvumo teorija ir kvantinė mechanika yra teoriniai šiuolaikinės fizikos pagrindai. Šias teorijas pavyko tarpusavyje susieti, tačiau bendrosios reliatyvumo teorijos, kartu ir gravitacijos, susieti dar nepavyko. XX a. 8 dešimtmetyje buvo iškelta drąsi hipotezė. Stivenas Hokingas (Stephen Hawking) iš Kembridžo universiteto su kolegomis teigė, jog gravitacijos ir kvantinių energijos fliuktuacijų kombinacija reikštų, kad juodosios skylės yra nestabilios. Šie kūnai turi spinduliuoti daleles, kurių energija skylei traukiantis didėtų ir dar labiau greitintų procesą, kol galiausiai viskas baigtųsi dramatišku sprogimu (žr. Qantum Black Holes, Bernard J. Carr, Steven B. GiDDings; Scientific American, 2005 gegužė).
3 Papildomi erdvės matmenysBandydami sukurti tokias teorijas, kai kurie fizikai postulavo, kad mūsų trimatė erdvė – tai tik dalis daugiau matmenų turinčios erdvės. Kai kuriose tokių teorijų versijose teigiama, kad mes nematome papildomų matmenų, nes medžiaga ir negravitacinės jėgos (pavyzdžiui, elektromagnetinės) apsiriboja tik trimis mums įprastais matmenimis. Gravitacija tokio apribojimo neturi. Ją perduodančios dalelės – gravitonai − gali turėti „pusbrolių“, vadinamųjų Kalucos ir Kleino (Kaluza-Klein) gravitonų, kurie sklinda daugiau matmenų turinčia erdve. Jei šie erdvės matmenys yra dideli, jie keičia gravitacijos pobūdį, ir GLAST (o galbūt ir LHC) galėtų tai aptikti (žr. The Universe’s Unseen Dimensions, Nima Arkani-Hamed, Savas Dimpoulos, Georgi Dvali; Scientific American, 2000 rugpjūtis). Pavyzdžiui, dalį savo energijos šiems egzotiškiems gravitonams galėtų perduoti supernovų sprogimai, o tada jie virstų kitomis dalelėmis, tarp jų ir gama spinduliais. Kosminė observatorija EGRET šių reiškinių ieškojo nesėkmingai. Tuo remdamiesi fizikai padarė išvadą, kad Kalucos ir Kleino gravitonais galėjo virsti ne daugiau kaip 1 proc. supernovų energijos. GLAST stebės žymiai daugiau tokių objektų ir bus gerokai jautresnis, todėl mažų mažiausiai galės patikrinti įvairias daugiamatės erdvės teorijų versijas. 4 Nukrypimai nuo specialiosios reliatyvumo teorijosSpecialiosios reliatyvumo teorijos kertinis akmuo – tai, kad šviesos greitis vakuume nepriklauso nuo bangos ilgio. Didelės energijos (trumpabangiai) ir mažos energijos (ilgabangiai) fotonai turėtų keliauti vienodu greičiu. Šią prielaidą suponuoja Lorenco (Lorentz) invariantiškumas, kuris matematiškai aprašo Einšteino postulatą, kad fizikos dėsniai yra vienodi visiems stebėtojams, judantiems pastoviu greičiu. Tačiau ar šis principas tikrai toks nekintamas? Kvantinėje gravitacijos teorijoje jis gali ir negalioti. Mažiausiuose masteliuose erdvėlaikis gali fliuktuoti, ir didelių energijų fotonus šios fliuktuacijos veiks stipriau nei mažų energijų fotonus. Pagal analogiją, vaikiškas vežimėlis su mažais ratais grindinio nelygumus jaus labiau nei milžiniškas sunkvežimis, „apautas“ didelėmis padangomis. Didelių energijų fotonai, keliaudami perturbacijomis, gali nueiti santykiškai didesnį ar mažesnį atstumą, taip prailgindami ar sutrumpindami savo kelią Visatoje. (žr. The Search for Relativity Violations, Alan Kletelecky; Scientific American, 2004 rugsėjis). Pats geriausias būdas išmatuoti labai mažus greičio skirtumus – surengti labai ilgas lenktynes: kuo trasa ilgesnė, tuo didesnis laiko skirtumas bus užregistruotas finiše. Startą tokioms lenktynėms gamta duoda kaskart, kai tik įvyksta gama spindulių žybsnis. Jo metu pasklinda įvairiausių energijų fotonų impulsai, kurie, prieš pasiekdami mus, gali nukeliauti milijardus šviesmečių. Savo regėjimo lauke EGRET užregistravo tik šešis žybsnius, ir kiekvieną iš jų sudarė labai nedaug fotonų. GLAST neabejotinai aptiks žymiai daugiau. Jis galės nustatyti laiko skirtumus tarp didelės ir mažos energijos gama spindulių, atlekiančių iš įvairiais atstumais nuo mūsų buvusių žybsnių. Kai kurie modeliai prognozuoja, kad šie skirtumai sieks 10 ar daugiau milisekundžių ir GLAST pajėgs juos užregistruoti. Jei palydovas aptiks skirtumus, fizikai pirmiausia turės įrodyti, kad to negalima paaiškinti jau žinomais astrofizikiniais reiškiniais, pavyzdžiui, procesais, vykstančiais pačiose žybsinčiose žvaigždėse. Vienas iš testų turi parodyti, ar didėjant atstumui iki šaltinio laiko skirtumas taip pat tolygiai didėja. Jei paaiškės, kad jis didėja, turėsime pagrindą rimtai suabejoti daugeliu įprastinių paaiškinimų. Kitas testas turėtų parodyti, ar laiko skirtumai nepriklauso nuo objekto tipo – ar tai būtų gama spindulių žybsniai, ar supermasyvių juodųjų skylių generuojami pliūpsniai.
5 Medžiaga ekstremaliomis sąlygomisAprašytiems reiškiniams paaiškinti prireiks naujų fizikos dėsnių. Tačiau mokslininkams sunkiai sekasi pritaikyti jau žinomus dėsnius, ir GLAST pagalba čia bus ypač svarbi. Pavyzdžiui, manoma, kad supermasyvių juodųjų skylių galima rasti daugelio galaktikų centruose, ir jos glaudžiai susijusios su tų galaktikų formavimusi bei evoliucija. Galaktikos centre esanti juodoji skylė auga akretuodama ją supančias dujas, todėl galaktikos branduolys gali įsižiebti ir virsti aktyviu (angl. AGN – Active galactic nucleus). AGN yra vieni iš pagrindinių gama spindulių šaltinių Visatoje. Šios juodosios skylės tiesiogiai neskleidžia gama spindulių. Jos sukuria galingas energingų dalelių čiurkšles, lekiančias šviesai artimu greičiu. Šios susiduria su mažesnės energijos fotonais ir juos pagreitina iki gama spindulių energijos. Astrofizikai mano, kad čiurkšlės yra nukreiptos išilgai besisukančios juodosios skylės sukimosi ašies, o jų veikimą palaiko juodosios skylės sukimosi energija. Vien tik gama diapazone išsiskiriama energija gali prilygti energijai, kurią išspinduliuoja mūsų Galaktikos žvaigždės visame elektromagnetiniame spektre. Iš kosmoso atlekiantys gama spinduliai suteikia unikalią galimybę tyrinėti šalia juodųjų skylių esančias ekstremalias sąlygas. Kodėl tūkstančių šviesmečių ilgio čiurkšlės neišsisklaido? Kur ir kaip čiurkšlės kinetinė energija virsta gama spinduliuote? Atsakymus į šiuos klausimus galime gauti naudodami GLAST, radijo bei optinių observatorijų sukauptus duomenis ir analizuodami, kaip kinta šių galingų spinduliavimo šaltinių spektrai laikui bėgant.
Viena iš didžiausių astrofizikos paslapčių per pastaruosius keletą dešimtmečių – gama spindulių žybsnių kilmė. Tai labai trumpi aukštos energijos spindulių žybsniai, ateinantys iš atsitiktinių dangaus vietų ir daugiau toje pat vietoje nesikartojantys (žr. The Brightest Explosions in the Universe, Neil Gehrels, Luigi Piro, Peter J. T. Leonard; Scientific American, 2002 gruodis). Bandydami rasti šių kosminių sprogimų šaltinius, astronomai pastaraisiais metais atliko milžinišką darbą. Atrodo, kad juos sukelia arba masyvių žvaigždžių centruose gimstančios juodosios skylės, arba dvinarių neutroninių žvaigždžių ar juodųjų skylių susiliejimai. Tikėtina, kad abu mechanizmai veikia ir sukuria skirtingų tipų žybsnius. GLAST labai padės tyrinėti šias paslaptis. Milžiniškos energijos srityje vyksta neeilinis dalykas – šviesa gali sąveikauti su šviesa. Du mažos energijos šviesos srautai vienas kitą kerta to nepajusdami, tačiau, jei fotonai turi dideles energijas, kvantiniai efektai juos priverčia „bendrauti“. Pavyzdžiui, kai gama spinduliai skrodžia erdvę, jie gali sąveikauti su žvaigždžių šviesa ir sukurti elektrono bei pozitrono poras. Optinio diapazono fotonai veikia tarytum savotiškas rūkas, kurį gama spinduliams tenka kirsti. Todėl iš tolimų šaltinių atlekiantiems didelės energijos gama spinduliams Visata yra neskaidri. Išmatavęs daugelio aktyvių galaktikų gama spektrą GLAST leis įvertinti, kiek optinio ir ultravioletinio diapazono šviesos sklinda kosminėje erdvėje. Pagal šviesos kiekį bus galima nustatyti, kaip Visatoje kito žvaigždėdaros greitis (žr. The Cosmic Reality Check, Gunther Hasinger, Roberto Gilli; Scientific American, 2002 kovas). 6 Nauji reiškiniaiPažvelgę į istoriją pamatysime, kad kaskart, patobulinus matavimo techniką, dažnai būdavo atrandama naujų gamtos reiškinių. Pavyzdžiui, 1994 m. labai netikėtą atradimą padarė CGRO. Praėjus 75 min po gama spindulių pliūpsnio, palydovas užregistravo vienišą gama fotoną, turintį neįtikėtiną 18 GeV energiją. Tai pats energingiausias iš visų kada nors žybsniuose užregistruotų fotonų. Nuo to laiko teoretikai svarsto, ką šis įvykis gali pasakyti apie žybsnių fiziką. Kas žino, ką mums atneš ateinanti atradimų era? Ekstrapoliavęs ankstesnių kosminių gama spindulių observatorijų pasiekimus, GLAST neabejotinai išspręs daugelį šiandien svarbių klausimų apie didelės energijos Visatą, tačiau niekas nežino, ką visiškai nauja pamatysime pro jo atvertą langą. Apie autoriusViljamas B. Atvudas (William B. Atwood), Peteris F. Maikelsonas (Peter F. Michelson) ir Stivenas Ricas (Steven Ritz) priklauso didelei tarptautinei mokslininkų, inžinierių ir technikų grupei, kuri sukūrė GLAST teleskopą. Atvudas, šiuo metu profesoriaujantis Kalifornijos universitete Santa Kruze, yra dalyvavęs daugelyje dalelių fizikos eksperimentų, tarp jų ir SLAC, kurio rezultatas – kvarkų atradimas. Jis taip pat garsėja kaip smuikų gamintojas − yra sukūręs daugiau kaip 50 instrumentų. Maikelsonas yra Stanfordo universiteto profesorius, atsakingas už stebėjimus GLAST LAT teleskopu. Mokslinės karjeros pradžioje jis tyrė superlaidumą, o astrofizika susidomėjo sukūręs prietaisus, skirtus registruoti gravitacinėms bangoms. Ricas yra ne tik GLAST projekto mokslininkas, bet ir NASA Godardo kosminių skrydžių centro astrofizikas bei Merilando universiteto profesorius; taip pat jis kuria muziką. Jei norite pasidomėti plačiau
Straipsnio tekstinė ir vaizdinė medžiaga priklauso "Scientific American lietuviškas leidimas" žurnalui ir be redakcijos sutikimo draudžiama kopijuoti ar kitaip atgaminti straipsnyje panaudotą informaciją.
sdfdsgfsdfsdfg
|