Mobili versija | Apie | Visos naujienos | RSS | Kontaktai | Paslaugos
 
Jūs esate čia: Pradžia » Visos temos » Mokslas » Astronomija ir kosmonautika

Kodėl Saulė neužgęsta, jei kosmose nėra deguonies?

2015-08-25 (15) Rekomenduoja   (71) Perskaitymai (330)
    Share
Tai straipsnis iš rašinių ciklo. Peržiūrėti ciklo turinį

Jei paklaustume, kaip vadinasi procesas, kuriam vykstant, išsiskiria šiluma ir (dažnai) šviesa, tikriausiai išgirstume atsakymą „degimas“. Tuos pačius produktus gauname ir iš Saulės, tad nieko keisto, kad procesus maga sulyginti. Tačiau šio gėrio radimosi priežastys – skirtingos.

Technologijos.lt redakcija sulaukė klausimo, į kurį formaliai galima atsakyti vienu sakiniu:

Prisijunk prie technologijos.lt komandos!

Laisvas grafikas, uždarbis, daug įdomių veiklų. Patirtis nebūtina, reikia tik entuziazmo.

Sudomino? Užpildyk šią anketą!

Degimas, kurį regime, vakarodami prie laužo, yra cheminė reakcija, vykstanti, malkas sudarantiems anglies ir vandenilio junginiams oksiduojantis atmosferos deguonimi, o štai dieną kelią nušvietusi ir kaitra žygeivius varginusi Saulės energija randasi iš termobranduolinių reakcijų.

Toks būtų atsakymas vienu sakiniu.

Bet šiame klausime telpa didelė mūsų žinių ir supratimo apie visatą dalis. Šis klausimas – kaip kumštyje suspausta grandinėlė. Taigi, jei vieno sakinio pažvanginimo negana, išnarpliokime kelis svarbiausius aspektus:

 

  1. Kas yra degimas ir kodėl jis vyksta?
  2. Kas yra Saulė ir kodėl ji šviečia?
  3. Kas yra deguonis ir iš kur jis atsirado?

Kas yra degimas ir kodėl jis vyksta?

Degimu paprastai vadinama oksidacijos reakcija*, tokį degimą čia ir apžvelgsime.

Kaip jau minėta, degimas yra cheminė reakcija, tad jai galioja tokios pat taisyklės, kaip ir kitoms cheminėms reakcijoms. Kad vyktų degimas, reikia kuro, oksidatoriaus ir energijos. Jei vykstant reakcijai, energijos išsiskiria daugiau, nei reikia jos palaikymui (egzoterminė reakcija), kartą prasidėjusi, toliau ji vyksta savaime.

*Tiksliau, oksidacijos – redukcijos, redokso reakcija. Tai cheminė reakcija, kurios metu keičiasi reagentų (oksidatoriaus ir reduktoriaus) oksidacijos laipsniai. Oksidatoriai redukuojasi, o reduktoriai – oksiduojasi.
N. B.: Norint žinoti, kur redokso reakcijų metu keliauja elektronai, verta niūniuoti mėgiamą operą. Nes taip lengviau atsiminti, kad Oksidatoriai Pasiima Elektronus, Reduktoriai Atiduoda.

Reakcija vyksta, nes oksidatoriaus išoriniame elektronų sluoksnyje iki visiško išorinio sluoksnio užpildymo „trūksta“ elektronų (deguonies atveju – 2), o reduktorius elektronų išoriniame sluoksnyje turi „per daug“ (anglies atveju – 4). Tad vykstant anglies oksidavimo reakcijai, paprasčiau tariant, angliai degant, ji neprieštarauja deguoniui perleisti 4 elektronus. Todėl galutinio produkto – anglies dioksido – formulė yra CO₂, t.y. vienas anglies atomas paskolina 4 elektronus, kuriuos priglobia du deguonies atomai.

Ir kas iš to? Ogi tas, kad tokia elektronų konfigūracija energetiniu požiūriu yra naudingesnė, ir energijos skirtumas tarp šių būsenų išsiskiria kaip jau minėta šviesa ir šiluma. Grynos anglies atveju, sudeginus (deguonyje) jos vieną kilogramą, išsiskiria 32,8 MJ energijos. Tiek energijos 1 kW galios lygintuvas sunaudoja per ~9 valandas. Jei degintume vandenilį, sudeginę vieną jo kilogramą, gautume net 142 MJ energijos ir minėtą lygintuvą galėtume stumdyti ilgiau nei pusantros paros.

Kas yra Saulė ir kodėl ji šviečia?

Saulė yra vidutinė, G tipo, pagrindinės sekos žvaigždė, įsitaisiusi Hertzprungo – Russello diagramos centre. Jos skleidžiamų elektromagnetinių bangų diapazonas daug platesnis nei laužo. Gal ir gerai – nesinorėtų, mėgaujantis laužo šiluma ir šviesa dar būti švitinamam ultravioletiniais spinduliais. Jų saulelė irgi negaili, ir jei Žemės negaubtų ozono sluoksnis, labai greitai pajustume savo kailiu. Nuo Saulės paviršiaus spinduliavimas iki mūsų atskrieja per ~8 minutes, per tą laiką įveikdamas vieną astronominį vienetą ~150 000 000 km. Taigi, matome Saulę tokią, kokia ji buvo prieš 8 minutes. Bet visa Saulės energija išsiskiria ne paviršiuje, kaip degant malkoms, o branduolyje ir ten vos atsiradę energijos kvantai nelekia laisvai, o daugybę kartų sugeriami ir vėl išspinduliuojami. Tad nuo branduolio iki paviršiaus spinduliavimas skverbiasi neįtikėtinai ilgai – įvairiais vertinimais, nuo 10 000 iki 170 000 metų.

Saulė daug didesnė už Žemę – jos skersmuo 109 kartus didesnis, o ir masė sudaro 99,86% visos mūsų planetų sistemos masės – ir sudaryta iš dujų (¾ jų – vandenilis, kita dalis helis ir dar sunkesni elementai). Slėgis jos branduolyje milžiniškas, o ir temperatūra siekia milijonus laipsnių. Tokiomis sąlygomis pradeda vykti nebe cheminės, o branduolinės reakcijos, tai yra tokios, kuriose dalyvauja nebe elektronai (tokiame karštyje elektronai nuo branduolių nuplėšiami ir medžiaga virsta plazma), o atomų branduoliai.

Branduolinės reakcijos“ skamba grėsmingai, ypač minint 70-asias branduolinio ginklo panaudojimo metines. Tačiau žvaigždžių gelmėse vyksta ne sunkiųjų elementų branduolių skilimo reakcijos, kaip bombose ir pastatytuose ar gamtos sukurtuose atominiuose reaktoriuose, kai lieka skilimo produktai, nerimą kelsiantys dar ne vieną tūkstantmetį. Ten vyksta termobranduolinės sintezės reakcijos, kai iš paprastesnių elementų sukuriami vis sunkesni. Tiesą sakant, išsisklaidžius Didžiojo sprogimo dūmams, mūsų visatos periodinėje elementų sistemoje tebuvo 3 lengviausi elementai – vandenilis, (branduolį sudaro 1 protonas), helis, (branduolyje 2 protonai ir 2 neutronai), bei dar šiek tiek ličio dėl šventos ramybės (branduolyje 3 protonai ir 3 neutronai). Visi kiti elementai buvo susintetinti – ir tebesintetinami – žvaigždėse.

Lengviausiai žvaigždėse vyksta ir daugiausiai energijos išskiria vandenilio virtimo heliu reakcija, kai iš keturių vandenilio branduolių – protonų – gaunamas vienas helio branduolys.

Bet juk protonų sulipdymui oho kiek jėgų reikia – jie gi vienodo krūvio ir stumia vienas kitą kaip įmanydami! Pradžioje darbą atliko gravitacija, suspaudusi pirminius vandenilio debesis į kamuolius – pirmos kartos žvaigždes. Spaudžiamos dujos kaista, o kaitinamos – plečiasi. Galima tikėtis, kad galiausiai nusistovėtų pusiausvyra ir tuo visatos raidos istorija baigtųsi. Bet esame liudininkai, kad taip nenutiko ir elementų periodinėje lentelėje tuntai. Kyla klausimas, iš kur energija viso to gėrio sukūrimui?

Jei pasvertume žvaigždžių branduolių žaizdruose sunaudotą vandenilį ir gautą helį, pamatytume, kad helio 0,7% mažiau, nei sunaudota vandenilio – iš vieno kilogramo vandenilio gautume 993 gramus helio. Atrodo smulkmena. Bet čia priėjo Einšteinas ir tarė: E=mc². Na, tarė jis kiek kitaip, tačiau mūsų nagrinėjamam atvejui toks pasakymas tinka. Taigi, žiūrime, ką gauname iš 7 gramų skirtumo – 0,007 kg·(3·10⁸m/s)²=6,3·10¹⁵ J. Tokio energijos kiekio mūsų pavyzdiniam lygintuvui pakaktų beveik 20 milijonų metų. Garantinis aptarnavimas jau būtų pasibaigęs…

 

Kas yra deguonis ir iš kur jis atsirado?

Kaip ir visose reakcijose – cheminėse, termobranduolinėse, – lieka reakcijos produktai. Lauže naudojamas deguonis ir malkos, gaunama šviesa, šiluma, lieka pelenai (ir geri prisiminimai). Žvaigždžių branduoliuose vykstančių reakcijų produktai yra dar naudingesni – be šviesos ir šilumos (kurių, kaip matėme, išsiskiria nepalyginamai daugiau, nei lauže) dar lieka ir „pelenai“ – sunkesni elementai. Jei pradinė žvaigždė pakankamai sunki, tai sudegus vandeniliui, ima degti helis, deguonis, azotas, anglis, neonas…

Žodžiu, dega lengvesni elementai ir taip susidaro sunkesnieji elementai, taip pat ir lauže besijungiantys anglies ir deguonies atomai. Savo ruožtu sunkesnieji elementai tampa žaliava dar toliau periodinėje lentelėje esantiems. Bet kaskart reakcijos vyksta vis nenoriau – reikia vis didesnio slėgio ir aukštesnės temperatūros – ir jos išskiria vis mažiau energijos.

Taip vyksta, kol pasiekiama geležinė riba, už kurios elementų kūrimui reikalinga energija tampa didesnė už reakcijos metu išsiskiriančią. Geležine ši riba vadinama ne veltui, nes paskutinis elementas, gaunamas „įprastu“ būdu, yra geležis – ⁵⁶Fe.

Visi dar sunkesni elementai susikuria kitu būdu – žvaigždėms sprogstant kaip novoms, supernovoms ir panašiai. Žvaigždės branduolio vietoje lieka raudonoji nykštukė, baltoji nykštukė, neutroninė žvaigždė, ar – jei masė pakankama – juodoji bedugnė (mūsiškė Saulė juodąja bedugne netaps, masės nepakanka, liks baltoji nykštukė).

Sprogimai nuplėšia viršutinius žvaigždės sluoksnius, kuriuose būna reakcijų produktai, t.y. visi elementai, iš kurių susidaro naujos kartos žvaigždės ir planetų sistemos su visais jų gyventojais, kurie kartais susėda prie laužo ir žvelgdami į dangų, jaučiasi žvaigždžių dalimi.

 

 

technologijos.lt

Siųskite savo klausimus el. paštu info@technologijos.lt

Verta skaityti! Verta skaityti!
(81)
Neverta skaityti!
(10)
Reitingas
(71)
Visi šio ciklo įrašai:
2021-06-28 ->
2015-08-25 ->
Kodėl Saulė neužgęsta, jei kosmose nėra deguonies?
Komentarai (15)
Komentuoti gali tik registruoti vartotojai
Naujausi įrašai

Įdomiausi

Paros
173(0)
78(0)
60(1)
56(0)
49(0)
48(0)
43(0)
40(1)
38(0)
28(0)
Savaitės
198(0)
196(0)
193(0)
184(0)
178(0)
Mėnesio
308(3)
303(6)
295(0)
293(2)
293(2)